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Eigenvalues of Casimir operators forgl(m/∞)

M D Gould and N I Stoilova†
Department of Mathematics, University of Queensland, Brisbane Qld 4072, Australia

Received 12 August 1998

Abstract. A full set of Casimir operators for the Lie superalgebragl(m/∞) is constructed
and shown to be well defined in the categoryOFS generated by the highest-weight irreducible
representations with only a finite number of non-zero weight components. The eigenvalues of
these Casimir operators are determined explicitly in terms of the highest weight. Characteristic
identities satisfied by certain (infinite) matrices with entries fromgl(m/∞) are also determined.

1. Introduction

During the last few years the infinite-dimensional Lie algebras and Lie superalgebras have
played an important role in several areas of theoretical and mathematical physics [1–9]. They
have applications in the theory of integrable field equations, string theory, two-dimensional
statistical models. In addition, these algebras are of interest as examples of Kac–Moody Lie
(super-)algebras of infinite type.

However, for these algebras such a fundamental concept as Casimir invariants has not yet
been determined. The present paper is a step toward solving this problem.

We construct a full set of Casimir operators for the infinite-dimensional general linear Lie
superalgebragl(m/∞) corresponding to the natural matrix realization, namely

gl(m/∞) =
{
X =

(
A B

C D

)∣∣∣∣ A ∈ Mm×m,B ∈ Mm×∞, C ∈ M∞×m,D ∈ M∞×∞,

all but a finite number ofXij ∈ C are zero

}
(1)

whereMp×q is the space of allp × q complex matrices. The even subalgebragl(m/∞)0̄ has
B = 0 andC = 0; the odd subspacegl(m/∞)1̄ hasA = 0 andD = 0.

A basis for the Lie superalgebragl(m/∞) is given by the Weyl generatorsEij , i, j =
−m + 1,−m + 2, . . . ,0, 1, . . .. Assign to each indexi a degree〈i〉, which is zero fori ∈ −Z+

and 1 fori ∈ N (see the notation at the end of the introduction). Then the generatorEij is
even (respectively odd), if〈i〉 + 〈j〉 is an even (respectively odd) number. The multiplication
(≡ the supercommutator) [[, ]] of gl(m/∞) is given by the linear extension of the relations

[[Eij , Ekl ]] = δjkEil − (−1)(〈i〉+〈j〉)(〈k〉+〈l〉)δilEkj . (2)
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We will consider the categoryOFS generated by all highest-weight irreduciblegl(m/∞)
modulesV (3) with a finite number of non-zero highest-weight components3i of the highest
weight

3 ≡ (3−m+1,3−m+2, . . . , 30,31, . . . , 3k, 0, 0, . . .)

≡ (3−m+1,3−m+2, . . . , 30,31, . . . , 3k, 0̇). (3)

The highest-weight3 of V (3) uniquely characterized the module and satisfies the conditions:

3i −3i+1 ∈ Z+ ∀i 6= 0. (4)

Denote byH the Cartan subalgebra ofgl(m/∞). The dual spaceH ∗ of H is described
by the formsεi , i = −m + 1,−m + 2, . . ., whereεi : X → Aii , for −m + 1 6 i 6 0 and
εi : X → Dii , ∀i ∈ N, andX is given by (1) only for diagonalX. OnH ∗ there is a bilinear
form ( , ) defined by

(εi, εj ) = δij for −m + 16 i, j 6 0

(εi, εj ) = 0 for −m + 16 i 6 0 and j ∈ N
(εi, εj ) = −δij for i, j ∈ N.

(5)

The rootsεi − εj (i 6= j ) of gl(m/∞) are the non-zero weights of the adjoint representation.
The positive roots are those given by the set

8+ = {εi − εj | i < j, i, j = −m + 1,−m + 2, . . .}. (6)

Define

ρ = 1
2

0∑
i=−m+1

(1− 2i − 2m)εi + 1
2

∞∑
i=1

(1− 2i + 2m)εi. (7)

LetDn be the set ofgl(m/∞) weights

Dn = {ν| ν = (ν−m+1, . . . , ν0, ν1, . . . , νn, 0̇),

νi ∈ Z+, i = −m + 1,−m + 2, . . . , n− 1, νn ∈ N} (8)

and letD+
n ⊂ Dn be the subset of integral dominant weights inDn:

D+
n = {ν| ν ∈ Dn, νi − νi+1 ∈ Z+, ∀i 6= 0}. (9)

Note that ifν is a weight inV (3),3 ∈ D+
k , thenν ∈ Dn, for somen ∈ Z+.

In section 2 we construct a full set of Casimir operators convergent on each module
V (3). The eigenvalues of these Casimir invariants for all modules from the categoryOFS
are computed in section 3. In section 4 we present a derivation of the polynomial identities
satisfied by certain matrices with entries fromgl(m/∞).

Throughout the paper we use the following notation:

• irrep(s), irreducible representation(s);
• C, the complex numbers;
• Z+, all non-negative integers;
• N, all positive integers;
• U(A), the universal enveloping algebra ofA;

• 〈i〉 =
{

0 for i ∈ −Z+

1 for i ∈ N.



Eigenvalues of Casimir operators forgl(m/∞) 393

2. Construction of Casimir operators

An obvious invariant forgl(m/∞) is the first-order invariant

I1 =
∞∑

i=−m+1

Eii. (10)

It is not clear, however, how to construct appropriate higher-order Casimir operators for
gl(m/∞). Let us first consider the second-order invariantI

(m,n)
2 of gl(m/n):

I
(m,n)
2 =

n∑
i,j=−m+1

(−1)〈j〉EijEji

=
0∑

i,j=−m+1

EijEji −
n∑

i,j=1

EijEji +
n∑
i=1

0∑
j=−m+1

EijEji −
0∑

i=−m+1

n∑
j=1

EijEji

=
0∑

i=−m+1

0∑
j<i=−m+1

EijEji +
0∑

i=−m+1

0∑
j>i=−m+1

EijEji +
0∑

i=−m+1

E2
ii

−
n∑
i=1

n∑
j<i=1

EijEji −
n∑
i=1

n∑
j>i=1

EijEji −
n∑
i=1

E2
ii + 2

n∑
i=1

0∑
j=−m+1

EijEji

−
0∑

i=−m+1

n∑
j=1

(Eii +Ejj )

= 2
0∑

i=−m+1

0∑
j<i=−m+1

EijEji +
0∑

i=−m+1

0∑
j>i=−m+1

(Eii − Ejj ) +
0∑

i=−m+1

E2
ii

− 2
n∑
i=1

n∑
j<i=1

EijEji −
n∑
i=1

n∑
j>i=1

(Eii − Ejj )−
n∑
i=1

E2
ii + 2

n∑
i=1

0∑
j=−m+1

EijEji

− n
0∑

i=−m+1

Eii −m
n∑
i=1

Eii

= 2
n∑

i=−m+1

n∑
j<i=−m+1

(−1)〈j〉EijEji +
0∑

i=−m+1

Eii(Eii + 1−m− 2i)

−
n∑
i=1

Eii(Eii + 1 +n− 2i)− n
0∑

i=−m+1

Eii −m
n∑
i=1

Eii

= 2
n∑

i=−m+1

n∑
j<i=−m+1

(−1)〈j〉EijEji +
n∑

i=−m+1

(−1)〈i〉Eii(Eii + 1− 2i)− (m + n)I (m,n)1

= 2
n∑

i=−m+1

n∑
j<i=−m+1

(−1)〈j〉EijEji

+
n∑

i=−m+1

(−1)〈i〉Eii(Eii + 1− 2i)− 2mI(m,n)1 + (m− n)I (m,n)1 (11)

whereI (m,n)1 ≡ ∑n
i=−m+1Eii is the first-order invariant ofgl(m/n). Due to the last term in

(11) thegl(m/n) second-order invariant diverges asn→∞. Eliminating the last term in (11)
(the rest of the expression is also an invariant) and taking the limitn → ∞ one obtains the
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following quadratic Casimir forgl(m/∞):

I2 = 2
∞∑

i=−m+1

∞∑
j<i=−m+1

(−1)〈j〉EijEji +
∞∑

i=−m+1

(−1)〈i〉Eii(Eii + 1− 2i)− 2mI1 (12)

which is convergent (see formula (21)) on the categoryOFS of irreps considered. On
V (3),3 ∈ D+

k , I2 takes constant value

χ3(I2) =
k∑

i=−m+1

(
(−1)〈i〉3i(3i + 1− 2i)− 2m3i

) = (3,3 + 2ρ). (13)

This consideration shows how to construct the higher-order Casimir operators ofgl(m/∞).
Introduce to this end the characteristic matrix

A
j

i = (−1)〈i〉〈j〉Eji. (14)

Define the powers of the matrixA recursively by(
Aq
) j

i
=

∞∑
k=−m+1

A k
i

(
Aq−1

) j

k

((
A0
) j

i
≡ δij

)
. (15)

Using induction and thegl(m/∞) commutation relations (2) one obtains:

Proposition 1.[[
Ekl,

(
Aq
) j

i

]] = (−1)(〈k〉+〈l〉)〈i〉
(
δlj
(
Aq
) k

i
− δik

(
Aq
) j

l

)
. (16)

Therefore the matrix supertraces

str
(
Aq
) ≡ ∞∑

i=−m+1

(−1)〈i〉
(
Aq
) i

i
(17)

are formally Casimir operators. They are, however, divergent except forq = 1 in which
case we obtain the first-order invariant (10). Our purpose is to construct a full set of Casimir
invariants which are well defined and convergent on the categoryOFS .

Theorem 1. The Casimir operators defined recursively by

I1 =
∞∑

i=−m+1

(−1)〈i〉A i
i = str(A)

Iq =
∞∑

i=−m+1

(−1)〈i〉
[(
Aq
) i

i
− Iq−1

] = str[Aq − Iq−1
]

q = 2, 3, . . .

(18)

form a full set of convergentgl(m/∞) Casimir operators on each moduleV (3) ∈ OFS .
Observe that the operatorsIq are indeed Casimir invariants (see proposition 1). Then

it remains to prove they are convergent on the categoryOFS . We will do this by induction.
Consider first the caseq = 2:

I2 ≡
∞∑

j=−m+1

(−1)〈j〉
[(
A2
) j

j
− I1

] = 0∑
j=−m+1

[ ∞∑
i=−m+1

EijEji − I1
]

−
∞∑
j=1

[ ∞∑
i=−m+1

EijEji − I1
]
=

0∑
j=−m+1

0∑
i=−m+1

EijEji +
0∑

j=−m+1

∞∑
i=1

EijEji −mI1

−
∞∑
j=1

0∑
i=−m+1

EijEji −
∞∑
j=1

[ ∞∑
i=1

EijEji − I1
]
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= 2
0∑

i=−m+1

0∑
j<i=−m+1

EijEji +
0∑

i=−m+1

Eii(Eii + 1−m− 2i)−mI1 + 2
0∑

j=−m+1

∞∑
i=1

EijEji

−
∞∑
j=1

0∑
i=−m+1

(Eii +Ejj )−
∞∑
j=1

[
2
∞∑

i>j=1

EijEji +
∞∑

i<j=1

(Eii − Ejj ) +E2
jj − I1

]

= 2
∞∑

i=−m+1

∞∑
j<i=−m+1

(−1)〈j〉EijEji +
0∑

i=−m+1

Eii(Eii + 1−m− 2i)−mI1−m
∞∑
i=1

Eii

−
∞∑
j=1

[ ∞∑
i<j=1

(Eii − Ejj ) +E2
jj −

∞∑
i=1

Eii

]

= 2
∞∑

i=−m+1

∞∑
j<i=−m+1

(−1)〈j〉EijEji +
0∑

i=−m+1

Eii(Eii + 1− 2i)− 2mI1

−
∞∑
i=1

Eii(Eii + 1− 2i) (19)

which agrees with the definition (12).
Now letv ∈ V (3),3 ∈ D+

k , be an arbitrary weight vector. Then the weight ofv has the
form

ν = (ν−m+1, ν−m+2, . . . , ν0, . . . , νr , 0̇). (20)

Since

A
j

i v = (−1)〈i〉〈j〉Ejiv = 0 ∀i > r (21)

the second-order invariantI2 is convergent on eachV (3) ∈ OFS (cf formula (13)).
Applying proposition 1 and (21), fori > r one obtains(

Aq
) i

i
v =

∞∑
j=−m+1

A
j

i

(
Aq−1

) i

j
v =

∞∑
j=−m+1

(−1)〈i〉〈j〉Eji
(
Aq−1

) i

j
v

=
∞∑

j=−m+1

(−1)〈i〉〈j〉
{
(−1)(〈j〉+〈i〉)〈j〉

[(
Aq−1

) j

j
− (Aq−1

) i

i

]
v

+ (−1)(〈i〉+〈j〉)
(
Aq−1

) i

j
Ejiv

}
=

∞∑
j=−m+1

(−1)〈j〉
[(
Aq−1

) j

j
− (Aq−1

) i

i

]
v. (22)

For the caseq = 2 we have(
A2
) i

i
v =

∞∑
j=−m+1

(−1)〈j〉
[
A

j

j − A i
i

]
v =

∞∑
j=−m+1

Ejjv = I1v ∀i > r (23)

so that ((
A2
) i

i
− I1

)
v = 0 ∀i > r (24)

which is another proof for the convergence ofI2. More generally

Proposition 2. For any weight vector v∈ V (3), andq = 2, 3, . . . there existr ∈ N such that((
Aq
) i

i
− Iq−1

)
v = 0 ∀i > r. (25)
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Proof. We proceed by induction. Assumev has weightν as in (20). Formula (25) is valid for
q = 2 (24). Let the result be true for a givenq, i.e.(

Aq
) i

i
v = Iq−1v ∀i > r.

Then (see equation (22))(
Aq+1

) i

i
v =

∞∑
j=−m+1

(−1)〈j〉
[(
Aq
) j

j
− (Aq) i

i

]
v

=
∞∑

j=−m+1

(−1)〈j〉
[(
Aq
) j

j
− Iq−1

]
v = Iqv ∀i > r (26)

which proves (25). �
Iq (18) is convergent on eachV (3) for q = 2. Assume it is well defined and convergent

onV (3) for a givenq. Then, withv as in (25), we have

Iq+1v ≡
∞∑

i=−m+1

(−1)〈i〉
[(
Aq+1

) i

i
− Iq

]
v =

r∑
i=−m+1

(−1)〈i〉
[(
Aq+1

) i

i
− Iq

]
v

=
r∑

i=−m+1

(−1)〈i〉
(
Aq+1

) i

i
v + (r −m)Iqv. (27)

ThereforeIq+1 is convergent and well defined onV (3).
This completes the (inductive) proof of theorem 1.

3. Eigenvalue formula for Casimir operators

In this section we apply our previous results to evaluate the spectrum of the operators (18).
Let v ∈ V (3), be an arbitrary vector of weightν = (ν−m+1, ν−m+2 . . . , ν0, ν1, . . . , νr , 0̇).

Then, keeping in mind proposition 1, the fact that
(
Aq−1

) j

k
has weightεj − εk under the

adjoint representation ofgl(m/∞) and that all vectors ofV (3) have weight componentsνi in
Z+, we must have forj 6 r(

Aq−1
) j

k
v = 0 ∀k > r. (28)

Therefore (
Aq
) j

i
v =

∞∑
k=−m+1

A k
i

(
Aq−1

) j

k
v =

r∑
k=−m+1

A k
i

(
Aq−1

) j

k
v. (29)

Proceeding recursively we may therefore write(
Aq
) j

i
v = (Āq) j

i
v ∀i, j = −m + 1,−m + 2, . . . , r (30)

where(Ā) ji = (−1)〈i〉〈j〉Eji , ∀i, j = −m+1, . . . , r, is thegl(m/r) characteristic matrix, and
the powers of the matrix̄A are defined by (15) withi, j, k = −m + 1, . . . , r andĀ instead of
A. It follows then that the formula (27) can be written as

Iqv =
r∑

i=−m+1

(−1)〈i〉
[(
Āq
) i

i
− Iq−1

]
v = [I (m,r)

q − (m− r)Iq−1
]
v (31)

with

I (m,r)
q =

r∑
i=−m+1

(−1)〈i〉
(
Āq
) i

i
(32)



Eigenvalues of Casimir operators forgl(m/∞) 397

being theqth-order invariant ofgl(m/r). formula (31) is valid∀q ∈ N, which gives a recursion
relation for theIq with initial condition

I1v = χ3(I1)v. (33)

In particular, it follows from (31) that the invariantsIq are certainly convergent on all weight
vectorsv ∈ V (3).

To determine the eigenvalues ofIq let v = v+
3 be the highest-weight vector of theV (3)

module and let

3 = (3̄, 0̇) ∈ D+
k 3̄ ≡ (3−m+1,3−m+2, . . . , 30,31, . . . , 3k). (34)

Then for the eigenvalues of theIq one obtains the recursion relation (see equation (31)):

χ3(Iq) = χ3̄
(
I (m,k)
q

)− (m− k)χ3(Iq−1) χ3(I1) =
k∑

i=−m+1

3i (35)

whereχ3̄
(
I (m,k)
q

)
is the eigenvalue of theqth-order invariant (32) ofgl(m/k)on the irreducible

gl(m/k) module with highest-weight̄3; the latter is given explicitly by [10]

χ3̄
(
I (m,k)
q

) = k∑
i=−m+1

(−1)〈i〉αqi
k∏

j 6=i=−m+1

(
αi − αj + (−1)〈j〉

αi − αj

)
(36)

where

αi = (−1)〈i〉(3i − i + 1)−m.
Therefore we obtain for the eigenvalues of the Casimir operatorsIq

χ3(Iq) =
k∑

i=−m+1

(−1)〈i〉Pq(αi)
k∏

j 6=i=−m+1

(
αi − αj + (−1)〈j〉

αi − αj

)
(37)

for suitable polynomialsPq(x) which, from equation (35), satisfy the recursion relation

Pq(x) = xq − (m− k)Pq−1(x) P1(x) = x. (38)

In particular,

P2(x) = x2 − (m− k)x = x x
2 − (m− k)2
x + (m− k) (39a)

P3(x) = x3− (m− k)(x2 − (m− k)x) = x x3 + (m− k)3
x + (m− k) (39b)

and more generally, it is easily established by induction that

Pq(x) = x x
q − (−1)q(m− k)q
x + (m− k) . (40)

Thus we have

Theorem 2. The eigenvalues of the Casimir operatorsIq (18), on the irreduciblegl(m/∞)
moduleV (3),3 ∈ D+

k are given by

χ3(Iq) =
k∑

i=−m+1

(−1)〈i〉αi

(
α
q

i − (−1)q(m− k)q
αi + (m− k)

) k∏
j 6=i=−m+1

(
αi − αj + (−1)〈j〉

αi − αj

)
(41)

whereαi = (−1)〈i〉 (3i − i + 1)−m.
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4. Polynomial identities

Let1 be the comultiplication on the enveloping algebraU [gl(m/∞)] of gl(m/∞) (1(Eij ) =
Eij ⊗1+1⊗Eij , i, j = −m+1,−m+2, . . .with 1 being the unit inU [gl(m/∞)]). Applying
1 to the second-order Casimir operator (12) ofgl(m/∞) we obtain

1(I2) = I2⊗ 1 + 1⊗ I2 + 2
∞∑

i,j=−m+1

(−1)〈j〉Eij ⊗ Eji. (42)

Therefore
∞∑

i,j=−m+1

(−1)〈j〉Eij ⊗ Eji = 1
2[1(I2)− I2⊗ 1− 1⊗ I2]. (43)

Denote byπε−m+1 the irrep ofgl(m/∞) afforded byV (ε−m+1). The weight spectrum for the
vector moduleV (ε−m+1) consists of all weightsεi , i = −m + 1,−m + 2, . . ., each occurring
exactly once. Denote byeij , i, j = −m + 1,−m + 2, . . . the generators on this space

πε−m+1(Eij ) = eij (44)

with eij an elementary matrix.
Introduce the characteristic matrix

A = 1
2(πε−m+1 ⊗ 1)[1(I2)− I2⊗ 1− 1⊗ I2]. (45)

Therefore

A l
k =

∞∑
i,j=−m+1

(−1)(〈i〉+〈j〉)〈l〉πε−m+1(Eij )kl(−1)〈j〉Eji = (−1)〈k〉〈l〉Elk. (46)

The matrixA is the infinite matrix introduced in section 2 (see equation (14)) and the entries
of the matrix powersAq are given recursively by (15). We will see that the characteristic matrix
satisfies a polynomial identity acting on thegl(m/∞) moduleV (3),3 ∈ D+

k . Letπ3 be the
representation afforded byV (3). From equation (45), acting onV (3) we may interpretA as
an invariant operator on the tensor product moduleV (ε−m+1)⊗ V (3):

A ≡ 1
2(πε−m+1 ⊗ π3)[1(I2)− I2⊗ 1− 1⊗ I2]. (47)

Following [11] it is easy to see that the tensor product space admits a filtration of submodules

V (ε−m+1)⊗ V (3) = Vk+1 ⊇ Vk ⊇ . . . V0 ⊇ . . . ⊇ V−m+1 ⊇ (0) (48)

where each factor moduleMi = Vi/Vi+1, if non-zero, is indecomposable and cyclically
generated by a highest-weight vector of weight3+εi . We emphasize thatMi is only non-zero
when3+ εi is integral dominant. Then it follows that the generalized eigenvalues ofA on the
tensor product space are given by
1
2[χ3+εi (I2)− χε−m+1(I2)− χ3(I2)] = 1

2[(3 + εi,3 + εi + 2ρ)− (ε−m+1, ε−m+1 + 2ρ)

−(3,3 + 2ρ)]

= (−1)〈i〉 (3i + 1− i)−m (49)

(see theorem 2). Thus we have

Theorem 3. On eachgl(m/∞)moduleV (3),3 ∈ D+
k the characteristic matrix satisfies the

polynomial identity
k+1∏

i=−m+1

(A− αi) = 0 (50)

with αi = (−1)〈i〉 (3i + 1− i)−m the characteristic roots.
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Note that the characteristic identities (50) are thegl(m/∞) counterpart of the polynomial
identities encountered forgl(m/n) by Jarvis and Green [12] (more precisely their adjoint
identities).
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