Eigenvalues of Casimir operators for $g l(m / \infty)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32391
(http://iopscience.iop.org/0305-4470/32/2/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:31

Please note that terms and conditions apply.

Eigenvalues of Casimir operators for $\boldsymbol{g l}(\boldsymbol{m} / \infty)$

M D Gould and N I Stoilova \dagger
Department of Mathematics, University of Queensland, Brisbane Qld 4072, Australia

Received 12 August 1998

Abstract

A full set of Casimir operators for the Lie superalgebra $g l(m / \infty)$ is constructed and shown to be well defined in the category $O_{F S}$ generated by the highest-weight irreducible representations with only a finite number of non-zero weight components. The eigenvalues of these Casimir operators are determined explicitly in terms of the highest weight. Characteristic identities satisfied by certain (infinite) matrices with entries from $\operatorname{gl}(m / \infty)$ are also determined.

1. Introduction

During the last few years the infinite-dimensional Lie algebras and Lie superalgebras have played an important role in several areas of theoretical and mathematical physics [1-9]. They have applications in the theory of integrable field equations, string theory, two-dimensional statistical models. In addition, these algebras are of interest as examples of Kac-Moody Lie (super-)algebras of infinite type.

However, for these algebras such a fundamental concept as Casimir invariants has not yet been determined. The present paper is a step toward solving this problem.

We construct a full set of Casimir operators for the infinite-dimensional general linear Lie superalgebra $g l(m / \infty)$ corresponding to the natural matrix realization, namely

$$
g l(m / \infty)=\left\{\left.X=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \right\rvert\, A \in M_{m \times m}, B \in M_{m \times \infty}, C \in M_{\infty \times m}, D \in M_{\infty \times \infty}\right.
$$

$$
\begin{equation*}
\text { all but a finite number of } \left.X_{i j} \in \mathbb{C} \text { are zero }\right\} \tag{1}
\end{equation*}
$$

where $M_{p \times q}$ is the space of all $p \times q$ complex matrices. The even subalgebra $g l(m / \infty)_{\overline{0}}$ has $B=0$ and $C=0$; the odd subspace $g l(m / \infty)_{\overline{1}}$ has $A=0$ and $D=0$.

A basis for the Lie superalgebra $g l(m / \infty)$ is given by the Weyl generators $E_{i j}, i, j=$ $-m+1,-m+2, \ldots, 0,1, \ldots$. Assign to each index i a degree $\langle i\rangle$, which is zero for $i \in-\mathbb{Z}_{+}$ and 1 for $i \in \mathbb{N}$ (see the notation at the end of the introduction). Then the generator $E_{i j}$ is even (respectively odd), if $\langle i\rangle+\langle j\rangle$ is an even (respectively odd) number. The multiplication (\equiv the supercommutator) \llbracket, \rrbracket of $g l(m / \infty)$ is given by the linear extension of the relations

$$
\begin{equation*}
\llbracket E_{i j}, E_{k l} \rrbracket=\delta_{j k} E_{i l}-(-1)^{(\langle i)+(j))(\langle k\rangle+\langle l\rangle)} \delta_{i l} E_{k j} \tag{2}
\end{equation*}
$$

[^0]We will consider the category $O_{F S}$ generated by all highest-weight irreducible $\operatorname{gl}(m / \infty)$ modules $V(\Lambda)$ with a finite number of non-zero highest-weight components Λ_{i} of the highest weight

$$
\begin{align*}
\Lambda & \equiv\left(\Lambda_{-m+1}, \Lambda_{-m+2}, \ldots, \Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{k}, 0,0, \ldots\right) \\
& \equiv\left(\Lambda_{-m+1}, \Lambda_{-m+2}, \ldots, \Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{k}, \dot{0}\right) \tag{3}
\end{align*}
$$

The highest-weight Λ of $V(\Lambda)$ uniquely characterized the module and satisfies the conditions:

$$
\begin{equation*}
\Lambda_{i}-\Lambda_{i+1} \in \mathbb{Z}_{+} \quad \forall i \neq 0 \tag{4}
\end{equation*}
$$

Denote by H the Cartan subalgebra of $g l(m / \infty)$. The dual space H^{*} of H is described by the forms $\varepsilon_{i}, i=-m+1,-m+2, \ldots$, where $\varepsilon_{i}: X \rightarrow A_{i i}$, for $-m+1 \leqslant i \leqslant 0$ and $\varepsilon_{i}: X \rightarrow D_{i i}, \forall i \in \mathbb{N}$, and X is given by (1) only for diagonal X. On H^{*} there is a bilinear form (,) defined by

$$
\begin{array}{lll}
\left(\epsilon_{i}, \epsilon_{j}\right)=\delta_{i j} & \text { for } & -m+1 \leqslant i, \quad j \leqslant 0 \\
\left(\epsilon_{i}, \epsilon_{j}\right)=0 & \text { for } \quad-m+1 \leqslant i \leqslant 0 \quad \text { and } \quad j \in \mathbb{N} \tag{5}\\
\left(\epsilon_{i}, \epsilon_{j}\right)=-\delta_{i j} & \text { for } \quad i, j \in \mathbb{N} .
\end{array}
$$

The roots $\varepsilon_{i}-\varepsilon_{j}(i \neq j)$ of $g l(m / \infty)$ are the non-zero weights of the adjoint representation. The positive roots are those given by the set

$$
\begin{equation*}
\Phi^{+}=\left\{\varepsilon_{i}-\varepsilon_{j} \mid i<j, i, j=-m+1,-m+2, \ldots\right\} . \tag{6}
\end{equation*}
$$

Define

$$
\begin{equation*}
\rho=\frac{1}{2} \sum_{i=-m+1}^{0}(1-2 i-2 m) \epsilon_{i}+\frac{1}{2} \sum_{i=1}^{\infty}(1-2 i+2 m) \epsilon_{i} . \tag{7}
\end{equation*}
$$

Let D_{n} be the set of $g l(m / \infty)$ weights

$$
\begin{align*}
D_{n}=\{v \mid v= & \left(v_{-m+1}, \ldots, v_{0}, v_{1}, \ldots, v_{n}, \dot{0}\right), \\
& \left.v_{i} \in \mathbb{Z}_{+}, i=-m+1,-m+2, \ldots, n-1, v_{n} \in \mathbb{N}\right\} \tag{8}
\end{align*}
$$

and let $D_{n}^{+} \subset D_{n}$ be the subset of integral dominant weights in D_{n} :

$$
\begin{equation*}
D_{n}^{+}=\left\{v \mid v \in D_{n}, v_{i}-v_{i+1} \in \mathbb{Z}_{+}, \quad \forall i \neq 0\right\} . \tag{9}
\end{equation*}
$$

Note that if v is a weight in $V(\Lambda), \Lambda \in D_{k}^{+}$, then $v \in D_{n}$, for some $n \in \mathbb{Z}_{+}$.
In section 2 we construct a full set of Casimir operators convergent on each module $V(\Lambda)$. The eigenvalues of these Casimir invariants for all modules from the category $O_{F S}$ are computed in section 3. In section 4 we present a derivation of the polynomial identities satisfied by certain matrices with entries from $\operatorname{gl}(m / \infty)$.

Throughout the paper we use the following notation:

- irrep(s), irreducible representation(s);
- \mathbb{C}, the complex numbers;
- \mathbb{Z}_{+}, all non-negative integers;
- \mathbb{N}, all positive integers;
- $U(A)$, the universal enveloping algebra of A;

$$
\text { - } \quad\langle i\rangle= \begin{cases}0 & \text { for } \quad i \in-\mathbb{Z}_{+} \\ 1 & \text { for } \quad i \in \mathbb{N}\end{cases}
$$

2. Construction of Casimir operators

An obvious invariant for $\operatorname{gl}(m / \infty)$ is the first-order invariant

$$
\begin{equation*}
I_{1}=\sum_{i=-m+1}^{\infty} E_{i i} \tag{10}
\end{equation*}
$$

It is not clear, however, how to construct appropriate higher-order Casimir operators for $g l(m / \infty)$. Let us first consider the second-order invariant $I_{2}^{(m, n)}$ of $g l(m / n)$:

$$
\begin{align*}
& I_{2}^{(m, n)}=\sum_{i, j=-m+1}^{n}(-1)^{\langle j\rangle} E_{i j} E_{j i} \\
& =\sum_{i, j=-m+1}^{0} E_{i j} E_{j i}-\sum_{i, j=1}^{n} E_{i j} E_{j i}+\sum_{i=1}^{n} \sum_{j=-m+1}^{0} E_{i j} E_{j i}-\sum_{i=-m+1}^{0} \sum_{j=1}^{n} E_{i j} E_{j i} \\
& =\sum_{i=-m+1}^{0} \sum_{j<i=-m+1}^{0} E_{i j} E_{j i}+\sum_{i=-m+1}^{0} \sum_{j>i=-m+1}^{0} E_{i j} E_{j i}+\sum_{i=-m+1}^{0} E_{i i}^{2} \\
& -\sum_{i=1}^{n} \sum_{j<i=1}^{n} E_{i j} E_{j i}-\sum_{i=1}^{n} \sum_{j>i=1}^{n} E_{i j} E_{j i}-\sum_{i=1}^{n} E_{i i}^{2}+2 \sum_{i=1}^{n} \sum_{j=-m+1}^{0} E_{i j} E_{j i} \\
& -\sum_{i=-m+1}^{0} \sum_{j=1}^{n}\left(E_{i i}+E_{j j}\right) \\
& =2 \sum_{i=-m+1}^{0} \sum_{j<i=-m+1}^{0} E_{i j} E_{j i}+\sum_{i=-m+1}^{0} \sum_{j>i=-m+1}^{0}\left(E_{i i}-E_{j j}\right)+\sum_{i=-m+1}^{0} E_{i i}^{2} \\
& -2 \sum_{i=1}^{n} \sum_{j<i=1}^{n} E_{i j} E_{j i}-\sum_{i=1}^{n} \sum_{j>i=1}^{n}\left(E_{i i}-E_{j j}\right)-\sum_{i=1}^{n} E_{i i}^{2}+2 \sum_{i=1}^{n} \sum_{j=-m+1}^{0} E_{i j} E_{j i} \\
& -n \sum_{i=-m+1}^{0} E_{i i}-m \sum_{i=1}^{n} E_{i i} \\
& =2 \sum_{i=-m+1}^{n} \sum_{j<i=-m+1}^{n}(-1)^{\langle j\rangle} E_{i j} E_{j i}+\sum_{i=-m+1}^{0} E_{i i}\left(E_{i i}+1-m-2 i\right) \\
& -\sum_{i=1}^{n} E_{i i}\left(E_{i i}+1+n-2 i\right)-n \sum_{i=-m+1}^{0} E_{i i}-m \sum_{i=1}^{n} E_{i i} \\
& =2 \sum_{i=-m+1}^{n} \sum_{j<i=-m+1}^{n}(-1)^{\langle j\rangle} E_{i j} E_{j i}+\sum_{i=-m+1}^{n}(-1)^{\langle i\rangle} E_{i i}\left(E_{i i}+1-2 i\right)-(m+n) I_{1}^{(m, n)} \\
& =2 \sum_{i=-m+1}^{n} \sum_{j<i=-m+1}^{n}(-1)^{\langle j\rangle} E_{i j} E_{j i} \\
& +\sum_{i=-m+1}^{n}(-1)^{\langle i\rangle} E_{i i}\left(E_{i i}+1-2 i\right)-2 m I_{1}^{(m, n)}+(m-n) I_{1}^{(m, n)} \tag{11}
\end{align*}
$$

where $I_{1}^{(m, n)} \equiv \sum_{i=-m+1}^{n} E_{i i}$ is the first-order invariant of $g l(m / n)$. Due to the last term in (11) the $\operatorname{gl}(m / n)$ second-order invariant diverges as $n \rightarrow \infty$. Eliminating the last term in (11) (the rest of the expression is also an invariant) and taking the limit $n \rightarrow \infty$ one obtains the
following quadratic Casimir for $g l(m / \infty)$:
$I_{2}=2 \sum_{i=-m+1}^{\infty} \sum_{j<i=-m+1}^{\infty}(-1)^{\langle j\rangle} E_{i j} E_{j i}+\sum_{i=-m+1}^{\infty}(-1)^{\langle i\rangle} E_{i i}\left(E_{i i}+1-2 i\right)-2 m I_{1}$
which is convergent (see formula (21)) on the category $O_{F S}$ of irreps considered. On $V(\Lambda), \Lambda \in D_{k}^{+}, I_{2}$ takes constant value

$$
\begin{equation*}
\chi_{\Lambda}\left(I_{2}\right)=\sum_{i=-m+1}^{k}\left((-1)^{\langle i\rangle} \Lambda_{i}\left(\Lambda_{i}+1-2 i\right)-2 m \Lambda_{i}\right)=(\Lambda, \Lambda+2 \rho) \tag{13}
\end{equation*}
$$

This consideration shows how to construct the higher-order Casimir operators of $g l(m / \infty)$.
Introduce to this end the characteristic matrix

$$
\begin{equation*}
A_{i}^{j}=(-1)^{\langle i\rangle\langle j\rangle} E_{j i} \tag{14}
\end{equation*}
$$

Define the powers of the matrix A recursively by

$$
\begin{equation*}
\left(A^{q}\right)_{i}^{j}=\sum_{k=-m+1}^{\infty} A_{i}^{k}\left(A^{q-1}\right)_{k}^{j} \quad\left(\left(A^{0}\right)_{i}^{j} \equiv \delta_{i j}\right) \tag{15}
\end{equation*}
$$

Using induction and the $\operatorname{gl}(m / \infty)$ commutation relations (2) one obtains:

Proposition 1.

$$
\begin{equation*}
\llbracket E_{k l},\left(A^{q}\right)_{i}^{j} \rrbracket=(-1)^{(\langle k\rangle+\langle l\rangle)\langle i\rangle}\left(\delta_{l j}\left(A^{q}\right)_{i}^{k}-\delta_{i k}\left(A^{q}\right)_{l}^{j}\right) . \tag{16}
\end{equation*}
$$

Therefore the matrix supertraces

$$
\begin{equation*}
\operatorname{str}\left(A^{q}\right) \equiv \sum_{i=-m+1}^{\infty}(-1)^{\langle i\rangle}\left(A^{q}\right)_{i}{ }^{i} \tag{17}
\end{equation*}
$$

are formally Casimir operators. They are, however, divergent except for $q=1$ in which case we obtain the first-order invariant (10). Our purpose is to construct a full set of Casimir invariants which are well defined and convergent on the category $O_{F S}$.

Theorem 1. The Casimir operators defined recursively by
$I_{1}=\sum_{i=-m+1}^{\infty}(-1)^{\langle i\rangle} A_{i}{ }^{i}=\operatorname{str}(A)$
$I_{q}=\sum_{i=-m+1}^{\infty}(-1)^{\langle i\rangle}\left[\left(A^{q}\right)_{i}{ }^{i}-I_{q-1}\right]=\operatorname{str}\left[A^{q}-I_{q-1}\right] \quad q=2,3, \ldots$
form a full set of convergent $g l(m / \infty)$ Casimir operators on each module $V(\Lambda) \in O_{F S}$.
Observe that the operators I_{q} are indeed Casimir invariants (see proposition 1). Then it remains to prove they are convergent on the category $O_{F S}$. We will do this by induction. Consider first the case $q=2$:

$$
\begin{aligned}
I_{2} \equiv & \sum_{j=-m+1}^{\infty}(-1)^{\langle j\rangle}\left[\left(A^{2}\right)_{j}^{j}-I_{1}\right]=\sum_{j=-m+1}^{0}\left[\sum_{i=-m+1}^{\infty} E_{i j} E_{j i}-I_{1}\right] \\
& -\sum_{j=1}^{\infty}\left[\sum_{i=-m+1}^{\infty} E_{i j} E_{j i}-I_{1}\right]=\sum_{j=-m+1}^{0} \sum_{i=-m+1}^{0} E_{i j} E_{j i}+\sum_{j=-m+1}^{0} \sum_{i=1}^{\infty} E_{i j} E_{j i}-m I_{1} \\
& -\sum_{j=1}^{\infty} \sum_{i=-m+1}^{0} E_{i j} E_{j i}-\sum_{j=1}^{\infty}\left[\sum_{i=1}^{\infty} E_{i j} E_{j i}-I_{1}\right]
\end{aligned}
$$

$$
\begin{align*}
= & 2 \sum_{i=-m+1}^{0} \sum_{j<i=-m+1}^{0} E_{i j} E_{j i}+\sum_{i=-m+1}^{0} E_{i i}\left(E_{i i}+1-m-2 i\right)-m I_{1}+2 \sum_{j=-m+1}^{0} \sum_{i=1}^{\infty} E_{i j} E_{j i} \\
& -\sum_{j=1}^{\infty} \sum_{i=-m+1}^{0}\left(E_{i i}+E_{j j}\right)-\sum_{j=1}^{\infty}\left[2 \sum_{i>j=1}^{\infty} E_{i j} E_{j i}+\sum_{i<j=1}^{\infty}\left(E_{i i}-E_{j j}\right)+E_{j j}^{2}-I_{1}\right] \\
= & 2 \sum_{i=-m+1}^{\infty} \sum_{j<i=-m+1}^{\infty}(-1)^{\langle j\rangle} E_{i j} E_{j i}+\sum_{i=-m+1}^{0} E_{i i}\left(E_{i i}+1-m-2 i\right)-m I_{1}-m \sum_{i=1}^{\infty} E_{i i} \\
& -\sum_{j=1}^{\infty}\left[\sum_{i<j=1}^{\infty}\left(E_{i i}-E_{j j}\right)+E_{j j}^{2}-\sum_{i=1}^{\infty} E_{i i}\right] \\
= & 2 \sum_{i=-m+1}^{\infty} \sum_{j<i=-m+1}^{\infty}(-1)^{\langle j\rangle} E_{i j} E_{j i}+\sum_{i=-m+1}^{0} E_{i i}\left(E_{i i}+1-2 i\right)-2 m I_{1} \\
& -\sum_{i=1}^{\infty} E_{i i}\left(E_{i i}+1-2 i\right) \tag{19}
\end{align*}
$$

which agrees with the definition (12).
Now let $v \in V(\Lambda), \Lambda \in D_{k}^{+}$, be an arbitrary weight vector. Then the weight of v has the form

$$
\begin{equation*}
v=\left(v_{-m+1}, v_{-m+2}, \ldots, v_{0}, \ldots, v_{r}, \dot{0}\right) \tag{20}
\end{equation*}
$$

Since

$$
\begin{equation*}
A_{i}{ }^{j} v=(-1)^{\langle i\rangle\langle j\rangle} E_{j i} v=0 \quad \forall i>r \tag{21}
\end{equation*}
$$

the second-order invariant I_{2} is convergent on each $V(\Lambda) \in O_{F S}$ (cf formula (13)).
Applying proposition 1 and (21), for $i>r$ one obtains

$$
\begin{align*}
\left(A^{q}\right)_{i}{ }^{i} v= & \sum_{j=-m+1}^{\infty} A_{i}{ }^{j}\left(A^{q-1}\right)_{j}^{i} v=\sum_{j=-m+1}^{\infty}(-1)^{\langle i\rangle\langle j\rangle} E_{j i}\left(A^{q-1}\right)_{j}^{i} v \\
= & \sum_{j=-m+1}^{\infty}(-1)^{\langle i\rangle\langle j\rangle}\left\{(-1)^{(\langle j\rangle+\langle i\rangle)\langle j\rangle}\left[\left(A^{q-1}\right)_{j}^{j}-\left(A^{q-1}\right)_{i}^{i}\right] v\right. \\
& \left.+(-1)^{(\langle i\rangle+\langle j\rangle)}\left(A^{q-1}\right)_{j}^{i} E_{j i} v\right\} \\
= & \sum_{j=-m+1}^{\infty}(-1)^{\langle j\rangle}\left[\left(A^{q-1}\right)_{j}^{j}-\left(A^{q-1}\right)_{i}^{i}\right] v . \tag{22}
\end{align*}
$$

For the case $q=2$ we have

$$
\begin{equation*}
\left(A^{2}\right)_{i}{ }^{i} v=\sum_{j=-m+1}^{\infty}(-1)^{\langle j\rangle}\left[A_{j}^{j}-A_{i}{ }^{i}\right] v=\sum_{j=-m+1}^{\infty} E_{j j} v=I_{1} v \quad \forall i>r \tag{23}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left(\left(A^{2}\right)_{i}{ }^{i}-I_{1}\right) v=0 \quad \forall i>r \tag{24}
\end{equation*}
$$

which is another proof for the convergence of I_{2}. More generally
Proposition 2. For any weight vector $v \in V(\Lambda)$, and $q=2,3, \ldots$ there exist $r \in \mathbb{N}$ such that

$$
\begin{equation*}
\left(\left(A^{q}\right)_{i}{ }^{i}-I_{q-1}\right) v=0 \quad \forall i>r . \tag{25}
\end{equation*}
$$

Proof. We proceed by induction. Assume v has weight v as in (20). Formula (25) is valid for $q=2(24)$. Let the result be true for a given q, i.e.

$$
\left(A^{q}\right)_{i}^{i} v=I_{q-1} v \quad \forall i>r .
$$

Then (see equation (22))

$$
\begin{align*}
\left(A^{q+1}\right)_{i}{ }^{i} v & =\sum_{j=-m+1}^{\infty}(-1)^{\langle j\rangle}\left[\left(A^{q}\right)_{j}^{j}-\left(A^{q}\right)_{i}{ }^{i}\right] v \\
& =\sum_{j=-m+1}^{\infty}(-1)^{\langle j\rangle}\left[\left(A^{q}\right)_{j}^{j}-I_{q-1}\right] v=I_{q} v \quad \forall i>r \tag{26}
\end{align*}
$$

which proves (25).
$I_{q}(18)$ is convergent on each $V(\Lambda)$ for $q=2$. Assume it is well defined and convergent on $V(\Lambda)$ for a given q. Then, with v as in (25), we have

$$
\begin{align*}
I_{q+1} v & \equiv \sum_{i=-m+1}^{\infty}(-1)^{\langle i\rangle}\left[\left(A^{q+1}\right)_{i}{ }^{i}-I_{q}\right] v=\sum_{i=-m+1}^{r}(-1)^{\langle i\rangle}\left[\left(A^{q+1}\right)_{i}{ }^{i}-I_{q}\right] v \\
& =\sum_{i=-m+1}^{r}(-1)^{\langle i\rangle}\left(A^{q+1}\right)_{i}{ }^{i} v+(r-m) I_{q} v \tag{27}
\end{align*}
$$

Therefore I_{q+1} is convergent and well defined on $V(\Lambda)$.
This completes the (inductive) proof of theorem 1.

3. Eigenvalue formula for Casimir operators

In this section we apply our previous results to evaluate the spectrum of the operators (18).
Let $v \in V(\Lambda)$, be an arbitrary vector of weight $v=\left(v_{-m+1}, v_{-m+2} \ldots, v_{0}, v_{1}, \ldots, v_{r}, \dot{0}\right)$. Then, keeping in mind proposition 1 , the fact that $\left(A^{q-1}\right)_{k}{ }^{j}$ has weight $\varepsilon_{j}-\varepsilon_{k}$ under the adjoint representation of $g l(m / \infty)$ and that all vectors of $V(\Lambda)$ have weight components v_{i} in \mathbb{Z}_{+}, we must have for $j \leqslant r$

$$
\begin{equation*}
\left(A^{q-1}\right)_{k}^{j} v=0 \quad \forall k>r . \tag{28}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left(A^{q}\right)_{i}^{j} v=\sum_{k=-m+1}^{\infty} A_{i}^{k}\left(A^{q-1}\right)_{k}^{j} v=\sum_{k=-m+1}^{r} A_{i}^{k}\left(A^{q-1}\right)_{k}^{j} v . \tag{29}
\end{equation*}
$$

Proceeding recursively we may therefore write

$$
\begin{equation*}
\left(A^{q}\right)_{i}^{j} v=\left(\bar{A}^{q}\right)_{i}{ }^{j} v \quad \forall i, j=-m+1,-m+2, \ldots, r \tag{30}
\end{equation*}
$$

where $(\bar{A})_{i}{ }^{j}=(-1)^{\langle i\rangle\langle j\rangle} E_{j i}, \forall i, j=-m+1, \ldots, r$, is the $g l(m / r)$ characteristic matrix, and the powers of the matrix \bar{A} are defined by (15) with $i, j, k=-m+1, \ldots, r$ and \bar{A} instead of A. It follows then that the formula (27) can be written as

$$
\begin{equation*}
I_{q} v=\sum_{i=-m+1}^{r}(-1)^{\langle i\rangle}\left[\left(\bar{A}^{q}\right)_{i}{ }^{i}-I_{q-1}\right] v=\left[I_{q}{ }^{(m, r)}-(m-r) I_{q-1}\right] v \tag{31}
\end{equation*}
$$

with

$$
\begin{equation*}
I_{q}{ }^{(m, r)}=\sum_{i=-m+1}^{r}(-1)^{\langle i\rangle}\left(\bar{A}^{q}\right)_{i}{ }^{i} \tag{32}
\end{equation*}
$$

being the q th-order invariant of $g l(m / r)$. formula (31) is valid $\forall q \in \mathbb{N}$, which gives a recursion relation for the I_{q} with initial condition

$$
\begin{equation*}
I_{1} v=\chi_{\Lambda}\left(I_{1}\right) v \tag{33}
\end{equation*}
$$

In particular, it follows from (31) that the invariants I_{q} are certainly convergent on all weight vectors $v \in V(\Lambda)$.

To determine the eigenvalues of I_{q} let $v=v_{\Lambda}^{+}$be the highest-weight vector of the $V(\Lambda)$ module and let

$$
\begin{equation*}
\Lambda=(\bar{\Lambda}, \dot{0}) \in D_{k}^{+} \quad \bar{\Lambda} \equiv\left(\Lambda_{-m+1}, \Lambda_{-m+2}, \ldots, \Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{k}\right) \tag{34}
\end{equation*}
$$

Then for the eigenvalues of the I_{q} one obtains the recursion relation (see equation (31)):

$$
\begin{equation*}
\chi_{\Lambda}\left(I_{q}\right)=\chi_{\bar{\Lambda}}\left(I_{q}{ }^{(m, k)}\right)-(m-k) \chi_{\Lambda}\left(I_{q-1}\right) \quad \chi_{\Lambda}\left(I_{1}\right)=\sum_{i=-m+1}^{k} \Lambda_{i} \tag{35}
\end{equation*}
$$

where $\chi_{\bar{\Lambda}}\left(I_{q}{ }^{(m, k)}\right)$ is the eigenvalue of the q th-order invariant (32) of $g l(m / k)$ on the irreducible $g l(m / k)$ module with highest-weight $\bar{\Lambda}$; the latter is given explicitly by [10]

$$
\begin{equation*}
\chi_{\bar{\Lambda}}\left(I_{q}{ }^{(m, k)}\right)=\sum_{i=-m+1}^{k}(-1)^{\langle i\rangle} \alpha_{i}^{q} \prod_{j \neq i=-m+1}^{k}\left(\frac{\alpha_{i}-\alpha_{j}+(-1)^{\langle j\rangle}}{\alpha_{i}-\alpha_{j}}\right) \tag{36}
\end{equation*}
$$

where

$$
\alpha_{i}=(-1)^{\langle i\rangle}\left(\Lambda_{i}-i+1\right)-m .
$$

Therefore we obtain for the eigenvalues of the Casimir operators I_{q}

$$
\begin{equation*}
\chi_{\Lambda}\left(I_{q}\right)=\sum_{i=-m+1}^{k}(-1)^{\langle i\rangle} P_{q}\left(\alpha_{i}\right) \prod_{j \neq i=-m+1}^{k}\left(\frac{\alpha_{i}-\alpha_{j}+(-1)^{\langle j\rangle}}{\alpha_{i}-\alpha_{j}}\right) \tag{37}
\end{equation*}
$$

for suitable polynomials $P_{q}(x)$ which, from equation (35), satisfy the recursion relation

$$
\begin{equation*}
P_{q}(x)=x^{q}-(m-k) P_{q-1}(x) \quad P_{1}(x)=x \tag{38}
\end{equation*}
$$

In particular,

$$
\begin{align*}
& P_{2}(x)=x^{2}-(m-k) x=x \frac{x^{2}-(m-k)^{2}}{x+(m-k)} \tag{39a}\\
& P_{3}(x)=x^{3}-(m-k)\left(x^{2}-(m-k) x\right)=x \frac{x^{3}+(m-k)^{3}}{x+(m-k)} \tag{39b}
\end{align*}
$$

and more generally, it is easily established by induction that

$$
\begin{equation*}
P_{q}(x)=x \frac{x^{q}-(-1)^{q}(m-k)^{q}}{x+(m-k)} \tag{40}
\end{equation*}
$$

Thus we have
Theorem 2. The eigenvalues of the Casimir operators I_{q} (18), on the irreducible $g l(m / \infty)$ module $V(\Lambda), \Lambda \in D_{k}^{+}$are given by
$\chi_{\Lambda}\left(I_{q}\right)=\sum_{i=-m+1}^{k}(-1)^{\langle i\rangle} \alpha_{i}\left(\frac{\alpha_{i}^{q}-(-1)^{q}(m-k)^{q}}{\alpha_{i}+(m-k)}\right) \prod_{j \neq i=-m+1}^{k}\left(\frac{\alpha_{i}-\alpha_{j}+(-1)^{\langle j\rangle}}{\alpha_{i}-\alpha_{j}}\right)$
where $\alpha_{i}=(-1)^{\langle i\rangle}\left(\Lambda_{i}-i+1\right)-m$.

4. Polynomial identities

Let Δ be the comultiplication on the enveloping algebra $U[g l(m / \infty)]$ of $g l(m / \infty)\left(\Delta\left(E_{i j}\right)=\right.$ $E_{i j} \otimes 1+1 \otimes E_{i j}, i, j=-m+1,-m+2, \ldots$ with 1 being the unit in $\left.U[g l(m / \infty)]\right)$. Applying Δ to the second-order Casimir operator (12) of $g l(m / \infty)$ we obtain

$$
\begin{equation*}
\Delta\left(I_{2}\right)=I_{2} \otimes 1+1 \otimes I_{2}+2 \sum_{i, j=-m+1}^{\infty}(-1)^{\langle j\rangle} E_{i j} \otimes E_{j i} . \tag{42}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\sum_{i, j=-m+1}^{\infty}(-1)^{\langle j\rangle} E_{i j} \otimes E_{j i}=\frac{1}{2}\left[\Delta\left(I_{2}\right)-I_{2} \otimes 1-1 \otimes I_{2}\right] . \tag{43}
\end{equation*}
$$

Denote by $\pi_{\varepsilon_{-m+1}}$ the irrep of $g l(m / \infty)$ afforded by $V\left(\varepsilon_{-m+1}\right)$. The weight spectrum for the vector module $V\left(\varepsilon_{-m+1}\right)$ consists of all weights $\varepsilon_{i}, i=-m+1,-m+2, \ldots$, each occurring exactly once. Denote by $e_{i j}, i, j=-m+1,-m+2, \ldots$ the generators on this space

$$
\begin{equation*}
\pi_{\varepsilon_{-m+1}}\left(E_{i j}\right)=e_{i j} \tag{44}
\end{equation*}
$$

with $e_{i j}$ an elementary matrix.
Introduce the characteristic matrix

$$
\begin{equation*}
A=\frac{1}{2}\left(\pi_{\varepsilon_{-m+1}} \otimes 1\right)\left[\Delta\left(I_{2}\right)-I_{2} \otimes 1-1 \otimes I_{2}\right] . \tag{45}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
A_{k}^{l}=\sum_{i, j=-m+1}^{\infty}(-1)^{(\langle i\rangle+\langle j\rangle)\langle l\rangle} \pi_{\varepsilon_{-m+1}}\left(E_{i j}\right)_{k l}(-1)^{\langle j\rangle} E_{j i}=(-1)^{\langle k\rangle\langle l\rangle} E_{l k} . \tag{46}
\end{equation*}
$$

The matrix A is the infinite matrix introduced in section 2 (see equation (14)) and the entries of the matrix powers A^{q} are given recursively by (15). We will see that the characteristic matrix satisfies a polynomial identity acting on the $g l(m / \infty)$ module $V(\Lambda), \Lambda \in D_{k}^{+}$. Let π_{Λ} be the representation afforded by $V(\Lambda)$. From equation (45), acting on $V(\Lambda)$ we may interpret A as an invariant operator on the tensor product module $V\left(\varepsilon_{-m+1}\right) \otimes V(\Lambda)$:

$$
\begin{equation*}
A \equiv \frac{1}{2}\left(\pi_{\varepsilon_{-m+1}} \otimes \pi_{\Lambda}\right)\left[\Delta\left(I_{2}\right)-I_{2} \otimes 1-1 \otimes I_{2}\right] \tag{47}
\end{equation*}
$$

Following [11] it is easy to see that the tensor product space admits a filtration of submodules

$$
\begin{equation*}
V\left(\varepsilon_{-m+1}\right) \otimes V(\Lambda)=V_{k+1} \supseteq V_{k} \supseteq \ldots V_{0} \supseteq \ldots \supseteq V_{-m+1} \supseteq(0) \tag{48}
\end{equation*}
$$

where each factor module $M_{i}=V_{i} / V_{i+1}$, if non-zero, is indecomposable and cyclically generated by a highest-weight vector of weight $\Lambda+\varepsilon_{i}$. We emphasize that M_{i} is only non-zero when $\Lambda+\varepsilon_{i}$ is integral dominant. Then it follows that the generalized eigenvalues of A on the tensor product space are given by

$$
\begin{align*}
\frac{1}{2}\left[\chi_{\Lambda+\varepsilon_{i}}\left(I_{2}\right)-\chi_{\varepsilon_{-m+1}}\left(I_{2}\right)-\chi_{\Lambda}\left(I_{2}\right)\right]= & \frac{1}{2}\left[\left(\Lambda+\varepsilon_{i}, \Lambda+\varepsilon_{i}+2 \rho\right)-\left(\varepsilon_{-m+1}, \varepsilon_{-m+1}+2 \rho\right)\right. \\
& -(\Lambda, \Lambda+2 \rho)] \\
= & (-1)^{(i\rangle}\left(\Lambda_{i}+1-i\right)-m \tag{49}
\end{align*}
$$

(see theorem 2). Thus we have
Theorem 3. On each $g l(m / \infty)$ module $V(\Lambda), \Lambda \in D_{k}^{+}$the characteristic matrix satisfies the polynomial identity

$$
\begin{equation*}
\prod_{i=-m+1}^{k+1}\left(A-\alpha_{i}\right)=0 \tag{50}
\end{equation*}
$$

with $\alpha_{i}=(-1)^{\langle i\rangle}\left(\Lambda_{i}+1-i\right)-m$ the characteristic roots.

Note that the characteristic identities (50) are the $g l(m / \infty)$ counterpart of the polynomial identities encountered for $g l(m / n)$ by Jarvis and Green [12] (more precisely their adjoint identities).

Acknowledgments

One of us (NIS) is grateful for the kind invitation to work in the mathematical physics group at the Department of Mathematics in University of Queensland. The work was supported by the Australian Research Council and by the grant $\Phi-416$ of the Bulgarian Foundation for Scientific Research.

References

[1] Kac V G 1985 Infinite Dimensional Lie Algebras vol 44 (Cambridge: Cambridge University Press)
[2] Kac V G and Raina A K 1987 Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras (Advanced Series in Mathematics vol 2) (Singapore: World Scientific)
[3] Date E, Jimbo M, Kashiwara M and Miwa T 1982 Publ. RIMS Kyoto Univ. 181077
[4] Sato M 1981 RIMS Kokyoroku 43930
[5] Goddard P and Olive D 1986 Int. J. Mod. Phys. A 1303
[6] Feigin B and Fuchs D 1989 Representations of the Virasoro algebra Representations of Infinite Dimensional Lie Groups and Lie Algebras (New York: Gordon and Breach)
[7] Kac V G and Van de Leur J W 1987 Ann. Inst. Fourier (Grenoble) 3799
[8] Kac V G and Van de Leur J W 1989 Infinite Dimensional Lie Algebras and Groups (Advanced Series in Mathematical Physics vol 7) ed V G Kac (Singapore: World Scientific) pp 369-406
[9] Ikeda K 1987 Lett. Math. Phys. 14321 Ikeda K 1987 Lett. Math. Phys. 3799
[10] Links J R and Zhang R B 1993 J. Math. Phys. 346016 Gould M D, Links J R and Zhang Y-Z 1996 Lett. Math. Phys. 36415
[11] Gould M D 1987 J. Aust. Math. Soc. B 28310
[12] Jarvis P D and Green H S 1979 J. Math. Phys. 202115

[^0]: \dagger Permanent address: Institute for Nuclear Research and Nuclear Energy, 1784 Sofia, Bulgaria. E-mail address: stoilova@inrne.bas.bg

