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Eigenvalues of Casimir operators forgl(m /oo)
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Department of Mathematics, University of Queensland, Brisbane QId 4072, Australia
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Abstract. A full set of Casimir operators for the Lie superalgelyiam /oo) is constructed

and shown to be well defined in the categ@ys generated by the highest-weight irreducible
representations with only a finite number of non-zero weight components. The eigenvalues of
these Casimir operators are determined explicitly in terms of the highest weight. Characteristic
identities satisfied by certain (infinite) matrices with entries frgitw /o) are also determined.

1. Introduction

During the last few years the infinite-dimensional Lie algebras and Lie superalgebras have
played an important role in several areas of theoretical and mathematical physics [1-9]. They
have applications in the theory of integrable field equations, string theory, two-dimensional
statistical models. In addition, these algebras are of interest as examples of Kac—Moody Lie
(super-)algebras of infinite type.

However, for these algebras such a fundamental concept as Casimir invariants has not yet
been determined. The present paper is a step toward solving this problem.

We construct a full set of Casimir operators for the infinite-dimensional general linear Lie
superalgebrgl (m/oco) corresponding to the natural matrix realization, namely

A B
gl(m/oo) = {X = ( c D )‘ A€ Myxm B € Myxoo, C € Mogym, D € Mooxoo,

all but a finite number ok;; € C are zer(% Q)

whereM,,, is the space of alp x ¢ complex matrices. The even subalgeptan /oo); has
B = 0 andC = 0; the odd subspagg (m/oo0); hasA = 0 andD = 0.

A basis for the Lie superalgebgd(m/oco) is given by the Weyl generatois;;, i, j =
-m+1,-m+2,...,0,1,.... Assignto each indeka degredi), which is zero foii € —Z.
and 1 fori € N (see the notation at the end of the introduction). Then the genefatis
even (respectively odd), if) + (/) is an even (respectively odd) number. The multiplication
(= the supercommutator),[] of gl(m/oo) is given by the linear extension of the relations

A (Y
[Eij. Eul = 8jxEq — (=)D, By &)
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We will consider the categor® s generated by all highest-weight irreducilgligm / 0o)
modulesV (A) with a finite number of non-zero highest-weight componentsf the highest
weight

A = (A,m+1, A,m+2, MR AO? Ala ML) Ak1 07 09 .. ')
= (Amsts A_mszs .- Ao, Ax, ..., Ag, 0). (3)

The highest-weight of V (A) uniquely characterized the module and satisfies the conditions:
A,‘ - Ai+l S Z+ Vl # O (4)

Denote byH the Cartan subalgebra of(m/co0). The dual spacél* of H is described
by the formse;, i = —-m+1, —m + 2, ..., whereg;: X — A;,for—-m+1 < i < 0and
¢ X — D;;, Vi € N, andX is given by (1) only for diagonak. On H* there is a bilinear
form (, ) defined by
(61',6]')2(3,'}' for -m+1<i, ]<O
(€i,€,)=0 for —m+1<i<0 and jeN (5)
(ei,ej)=—8ij for l,JGN
The rootse; — ¢; (i # j) of gl(m/o0) are the non-zero weights of the adjoint representation.
The positive roots are those given by the set

O =g —¢gli<j, i, j=—-m+1l—-m+2,.. .} (6)
Define
0 o0
p=3 Z (1—2i—2m)e,-+%2(1—2i+2m)ei. (7)
i=—m+1l i=1

Let D, be the set ofl(m/oo) weights

Di’l = {Vl V=(V,m+1,...,v0, vlv"'»‘jnv.o)v
Vi€Zy, i=—m+1l —m+2, ...,n—1 v, €N} (8)

and letD; c D, be the subset of integral dominant weightgin
Dy ={v|v e D,, vi —vis1 € Zs+, Vi # 0} 9)

Note that ifv is a weight inV (A), A € D], thenv € D, for somen € Z,.

In section 2 we construct a full set of Casimir operators convergent on each module
V(A). The eigenvalues of these Casimir invariants for all modules from the catepygry
are computed in section 3. In section 4 we present a derivation of the polynomial identities
satisfied by certain matrices with entries frgiitm /o).

Throughout the paper we use the following notation:

e irrep(s), irreducible representation(s);

e C, the complex numbers;

e Z., all non-negative integers;

o N, all positive integers;

e U(A), the universal enveloping algebra 4f
) 0 for ie—Z.

w 1 for i eN.
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2. Construction of Casimir operators

An obvious invariant fogl (m /oo) is the first-order invariant

S B (10)

i=—m+l

It is not clear, however, how to construct appropriate higher-order Casimir operators for
gl(m/o0). Let us first consider the second-order invarigfit” of g/ (m/n):

n
Iz(m,ﬂ) — Z (_1)(j>Ez E;;

i,j=—m+l
0 n n 0 0 n
= D EyEi= D EiEi*) ) EiEi— ), ) EiEj
i,j=—m+1 i,j=1 i=1 j=—m+1 i=—m+l j=1
0 0 0 0 0
= > D EyEq+ ) ), EyEp+ ) Ef
i=—m+l j<i=—m+1 i=—m+l j>i=—m+1 i=—m+1
n n n n n n 0
=D D EyEi—) Y EyEp—) Ei+2) Y EjEj
i=1 j<i=1 i=1 j>i=1 i=1 i=1 j=—m+1
0 n
- 2 2 (EatEp
i=—m+l j=
0 0 0
2 Y EE Y Y EEpr Y B
i=—m+l j<i=—m+1 i=—m+l j>i=—m+1 i=—m+l
n n n n n n 0
—2) Y EgE;=) ) ) (En—Ep) =) Ei+2) ) EjEj
i=1 j<i=1 i=1 j>i=1 i=1 i=1 j=—m+1
0 n
—n Z Eij; _mZEii
i=—m+1 i=1
n n i 0
=2 Z Z (—DY'E;Ej; + Z Eij(E;i+1—m —2i)
i=—m+l j<i=—m+1 i=—m+1
—ZE,,(E” +1+n—2i)—n Z E;; — mZE,,
i=—m+1
=2 Z Z (DY E;E) + Z (=D Eij (Eii + 1= 2i) — (m +n)[{"™"
i=—m+l j<i=—m+1 i=—m+1
=2 Z Z (DY E;Ej;
i=—m+l j<i=—m+1
n
+ Y (DY E(Ei +1-20) = 2mI™" + (m — n)1;"" (11)
i=—m+1
wherer""” = Y"__ . Ej is the first-order invariant of/(m/n). Due to the last term in

(12) thegl(m/n) second-order invariant divergesmas> oo. Eliminating the last termin (11)
(the rest of the expression is also an invariant) and taking the dimit oo one obtains the
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following quadratic Casimir fog/ (m /o0):

oo [e ] [o¢]
L=2 Y Y (-DYE;E;+ Y (-DYE;(E;+1-2i)—2ml (12)
i=—m+l j<i=—m+1 i=—m+1l

which is convergent (see formula (21)) on the categOnys of irreps considered. On
V(A), A € D}, I, takes constant value

k
= Y (DA A +1-20) —2mA;) = (A, A+2p).  (13)

i=—m+1
This consideration shows how to construct the higher-order Casimir operatgi@mofo).
Introduce to this end the characteristic matrix
A = (=)D E,. (14)
Define the powers of the matrix recursively by

W)= 3 A (), =) @9

Using induction and thel(m /co) commutation relations (2) one obtains:

Proposition 1.

[Eu. (4), " = (DE00 (5, (49) * — 55 (4), ). (16)
Therefore the matrix supertraces
str(A?) = Z (_1)<i>(Aq)ii a7
i=—m+1

are formally Casimir operators. They are, however, divergent except fer 1 in which
case we obtain the first-order invariant (10). Our purpose is to construct a full set of Casimir
invariants which are well defined and convergent on the cateQegy

Theorem 1. The Casimir operators defined recursively by

o0
L= Y (DDA, =str(A)
RS ‘ (18)
I= Y (=DO[(A1), = L] =str[A? =1, 4]  ¢=2,3...
i=—m+l

form a full set of convergertl (m/oco) Casimir operators on each modul&(A) € Ors.

Observe that the operatofg are indeed Casimir invariants (see proposition 1). Then
it remains to prove they are convergent on the categtyy. We will do this by induction.
Consider first the casg = 2:

L= Y (~DV[(4%), ~ 1] = XO: [ > EuEﬁ—’l]

j=—m+1 j=—m+1Li=—m+1
00 00 0 0 0 00

—Z|: E EijEji—11i| = E E EijEji+ Z E EijEji—mI]_
j=1bti=—m+1l j=—m+li=—m+1 j=—m+1li=1

00 0 00 00
_ Z Z EjE; — Z [Z EjEji — 11]
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0
=2 Z Z EjEj + Z Ei(Ei+1—m—2i)—ml+2 Z ZE,JEJ,
m+1j<1_—m+1 i=—m+l j=—m+li=
00 00 00 00
Z (Eii+Ejj)_Z|:2 Z EijEji + Z(Eu—Ejj)"'Ejz-j—Il]
j=1li=—m+1 j=1 i>j—l i<j=1
00
=2 ) Z (~DYE;E;j; + Z Ei(Ei+1—m— 21)—m11—mZE“
i=—m+l j<i=—m+1 i=—m+1
00
DIPNCENITE Y
=1Lli<j=1 i=1
00 ) 0
=2 Z Z (—1)<J>E[jEj,‘+ Z E,<,-(E,<,'+1—2i)—2m11
i=—m+l j<i=—m+1 i=—m+1
00
- Z Eii(E; +1-2i) (19)
i=1

which agrees with the definition (12).
Now letv € V(A), A € D, be an arbitrary weight vector. Then the weighwvdfas the
form

V= (‘)—m+la Vom+2y -5 V05« «+ 5 Vpy O) (20)
Since
AJv=(DPEv=0 = Vi>r (21)

the second-order invariaf is convergent on eacWi(A) € Ops (cf formula (13)).
Applying proposition 1 and (21), far> r one obtains

(Aq)iivz Z A, (A‘l 1 W Z (— 1)(1)(J)E (Aq 1) k.
j=—m+l j=—m+1
S SRS DU(a171) 7~ (A7), o
Jj=—m+l
+ (_1)(<i)+<j>)(Aqfl)jiEjiv}
= Y DAY — (a7, To. 22)
Jj=—m+1

For the casg = 2 we have

. o0 ) ) o0
Az)ilv: Z (—1)<j)[AJ.J —Ai’]v: Z Ejjv=1Iv Vi>r (23)
Jj=—m+l j=—m+1
so that
((Az)ii - Il)v =0 Vi >r (24)

which is another proof for the convergencel/gf More generally
Proposition 2. For any weight vector « V(A), andg = 2, 3, ... there exist € N such that
((A")ii —I,)v=0 Vi >r. (25)
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Proof. We proceed by induction. Assumeéhas weight as in (20). Formula (25) is valid for
g = 2 (24). Let the result be true for a giveni.e.

(Aq)[.iv =1I,_1v Vi >r.
Then (see equation (22))

(A7)0 = Z (—D[(A7), - (47),"Tv
j=—m+1l
Z (—1)<j)[(A‘1)jj — q,l]v =l Vi>r (26)
j=—m+1
which proves (25). O

1, (18) is convergent on eadh(A) for g = 2. Assume it is well defined and convergent
on V(A) for a giveng. Then, withv as in (25), we have

o0 . '
I ST (e KA N Sy R}
i=—m+l i=—m+1
= Z (—l)<i>(A‘7+l)iiv+(r _m)IqU. (27)
i=—m+l

Thereforel,+1 is convergent and well defined on(A).
This completes the (inductive) proof of theorem 1.

3. Eigenvalue formula for Casimir operators

In this section we apply our previous results to evaluate the spectrum of the operators (18).
Letv € V(A), be an arbitrary vector of weight= (v_,+1, v_p+2..., Vo, V1, ..., v, 0).

Then, keeping in mind proposition 1, the fact tiat’~*) ’ has weights; — & under the

adjoint representation @fl (m /oo) and that all vectors of (A) have weight componentsin

Z., we must have foy < r

-1\ J

(Aq )k v=0 Vk > r. (28)

Therefore
. 00 . r .
(a9),v=>" AXA v= > Ak@Ah v (29)
k=—m+1 k=—m+1

Proceeding recursively we may therefore write

(47), v =(A%)"v  Vi,j=-m+1l-m+2,...r (30)
where(A),” = (=)W E;;, Vi, j = —m+1,...,r,isthegl(m/r) characteristic matrix, and

the powers of the matrid are defined by (15) with j, k = —m + 1, ..., r andA instead of
A. It follows then that the formula (27) can be written as

o= Y CHO[AY), — alo= [, = -0t 3D

i=—m+1

with

1, = Y (~)P(a9),’ (32)

i=—m+1
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being theyth-order invariant ogl(m/r). formula (31) is valid’q € N, which gives arecursion
relation for thel, with initial condition

v = xa(Ip)v. (33)

In particular, it follows from (31) that the invarianfg are certainly convergent on all weight
vectorsv € V(A).

To determine the eigenvalues bflet v = v} be the highest-weight vector of tHé&(A)
module and let

= (A, 0) e D} A= ACmirs Amszs oo Aoy ALy ..., Ap). (34)
Then for the eigenvalues of thg one obtains the recursion relation (see equation (31)):
k
xay) = xa(1,"P) = m — k) xa(y-1) = Y A (35)
i=—m+1

wherey; (1, ") is the eigenvalue of thgth-order invariant (32) of (m / k) on the irreducible
gl(m/k) module with highest-weigha ; the latter is given explicitly by [10]

K s+ (=D
= Y e ] (=) (36)
i=—m+1 C i o~
where
o= (DA —i+ 1) —

Therefore we obtain for the eigenvalues of the Casimir operdjors

k , k L —a; (=D
iy =3 DOP@) [] (w) (37)
i=—m+1 jAi=—m+1 & — A

for suitable polynomial®, (x) which, from equation (35), satisfy the recursion relation

Py(x) = x7 — (m — k)Py_1(x) Pi(x) =x. (38)
In particular,

2 2
_ 2 B o xt—=(m— k)
P(x)=x (m —k)x = x—x Py— (39%)
3 EAY:
Ps(x) = x3 — (m — k) (x? — (m — k)x) = om0 (3%)

x+(m—k)
and more generally, it is easily established by induction that
x4 — (=D%(m — k)*

P,(x)=x pry— . (40)

Thus we have

Theorem 2. The eigenvalues of the Casimir operatdys(18), on the irreducibleg!(m/oo)
moduleV (A), A € D; are given by

k 9 _ (— _ k s —1){)
)=y (—1)<’>ai<“" i k)q) I1 (—a’ T DI) (41)

.+ — o
im—m+l o+ (m — k) jFi=—m+1 U

whereq; = (-1)@ (A; —i +1) —
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4. Polynomial identities
Let A be the comultiplication on the enveloping algebifg!(m /oco)] of gi(m/oo) (A(E;;) =

Ej®1+1QE;;,i, j =—m+1, —m+2,...with 1 being the unitirU[gl(m/o0)]). Applying
A to the second-order Casimir operator (12% 661 /00) we obtain

o0
A =Le1+18L+2 Y (-DYVE;®Ej. (42)
i,j=—m+1
Therefore
0 .
Z (_1)<1)Eij®Eji = %[A(Iz)—12®1—1®12]- (43)
i,j=—m+1
Denote byz, ., the irrep ofgl(m/oo) afforded byV (s_,,+1). The weight spectrum for the
vector moduleV (e_,,+1) consists of all weights;, i = —m + 1, —m + 2, ..., each occurring
exactly once. Denote by;, i, j = —m + 1, —m + 2, ... the generators on this space
e, (Eij) = €jj (44)

with ¢;; an elementary matrix.
Introduce the characteristic matrix

A=3(r ., @A) - L®1-18 1. (45)
Therefore

o0
Al= > (DD (Epu(-DYVEj; = (-DWVE,.  (46)
i,j=—m+1
The matrixA is the infinite matrix introduced in section 2 (see equation (14)) and the entries

of the matrix powerg\? are given recursively by (15). We will see that the characteristic matrix
satisfies a polynomial identity acting on th&m/oo) moduleV (A), A € D]. Letw, be the
representation afforded bBy(A). From equation (45), acting dn(A) we may interpref as
an invariant operator on the tensor product modide_,,+1) ® V(A):

A = %(T[Sﬂznl ® ﬂA)[A(lZ) - 12 ® 1 - 1 ® 12]. (47)
Following [11] it is easy to see that the tensor product space admits a filtration of submodules
V(em) ®VA) =Vim1 2 Vi 2 ... Vo2 ...2V_ 41 2 (0) (48)

where each factor modul®l; = V;/V,.1, if non-zero, is indecomposable and cyclically
generated by a highest-weight vector of weight ¢;. We emphasize thal; is only non-zero
whenA +¢; is integral dominant. Then it follows that the generalized eigenvaludsoof the
tensor product space are given by

$Uxace, (I12) = Xe (1) — xa(I2)] = F[(A + &1, A+ & +2p) — (E_p+1, E_ms1+ 20)
—(A, A +2p)]
= (DA +1-i)—m (49)
(see theorem 2). Thus we have
Theorem 3. On eachgl/(m/oo) moduleV (A), A € D; the characteristic matrix satisfies the

polynomial identity
k+1

[T a-ar=0 (50)

i=—m+1

witho; = (—1)% (A; + 1 — i) — m the characteristic roots.
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Note that the characteristic identities (50) are #ién/oco) counterpart of the polynomial
identities encountered fagl(m/n) by Jarvis and Green [12] (more precisely their adjoint
identities).
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